Monte Carlo characterization of 169Yb as a high‐dose‐rate source for brachytherapy application by FLUKA code
نویسندگان
چکیده
Higher initial dose rate and simplifying HDR room treatment of 169Yb element among other brachytherapy sources has led to investigating its feasibility as high-dose-rate seed. In this work, Monte Carlo calculation was performed to obtain dosimetric parameters of 169Yb, Model M42 source at different radial distances according to AAPM TG-43U1 and HEBD Report about HDR sources in both air vacuum and spherical homogeneous water phantom. The deposited energy resulted by FLUKA as Monte Carlo code using binning estimators around 169Yb source was converted into radial dose rate distribution in polar coordinates surrounding the brachytherapy source. The results indicate a dose rate constant of 1.14 ± 0.04 cGy.h(-1).U(-1) with approximate uncertainty of 0.04%, air kerma strength, 1.082± 2.6E-06 U.mCi(-1) and anisotropy function ranging from 0.386 to 1.00 for radial distances of 0.5-10 cm and polar angles of 0°-180°. Overall, FLUKA dosimetric outputs were benchmarked with those published by Cazeca et al. via MCNP5 as one of validate dosimetry datasets related to 169Yb HDR source. As a result, it seems that FLUKA code can be applicable as a valuable tool to Monte Carlo evaluation of novel HDR brachytherapy sources.
منابع مشابه
Dosimetric characterization of a high dose rate 192I source for brachytherapy application using Monte Carlo simulation and benchmarking with thermoluminescent dosimetry
Background: The purpose of this project was to derive the brachytherapy dosimetric functions described by American Association of Physicists in Medicine (AAPM) TG-43 U1 based on high dose rate 192I sources. Materials and Methods: The method utilized included both simulation of the designed Polymethyl methacrylate (PMMA) phantom using the Monte Carlo of MCNP4C and benchmarking of the simulation ...
متن کاملModeling and dose calculations of a pure beta emitting 32P coated stent for intracoronary brachytherapy by Monte Carlo code
Background: Recently, different investigators have studied the possibility of radiation therapy in restenosis prevention and have shown promising results. In this study a unique radioactive source for intra vascular brachytherapy (IVBT) was investigated. The two-dimensional dose distribution in water for a 32P IVBT stent has been calculated. The pure beta emitter source 32P has been co...
متن کاملDosimetric Parameters Estimation of I-125 Brachytherapy Source in fat phantom using GATE8.0 code
Introduction: Brachytherapy is one type of internal radiation therapy where radiation sources, which are usually encapsulated, are placed as close as possible to the tumor site or inside the patient's body. In this technique, it is important to determine dose distribution around the brachytherapy capsule to create optimal treatment plant. In this way, dosimetric parameters are...
متن کاملAccuracy Evaluation of Oncentraâ„¢ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code
Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computat...
متن کاملDetermination of TG-43 Dosimetric Parameters for Photon Emitting Brachytherapy Sources
Objective: Brachytherapy sources are widely used for the treatment of cancer. The report of Task Group No. 43 (TG-43) of American Association of Physicists in Medicine is known as the most common method for the determination of dosimetric parameters for brachytherapy sources. The aim of this study is to obtain TG-43 dosimetric parameters for 60Co, 137Cs, 192Ir and 103Pd brachyt...
متن کامل